
CIS 4004: JavaScript – Part 5 Page 1 © Dr. Mark Llewellyn

CIS 4004: Web Based Information Technology

Spring 2013

Introduction To JavaScript – Part 5

The Event Object

Department of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

 markl@cs.ucf.edu

 HEC 236, 407-823-2790

 http://www.cs.ucf.edu/courses/cis4004/spr2013

CIS 4004: JavaScript – Part 5 Page 2 © Dr. Mark Llewellyn

• When a W3C event listener’s event occurs and it calls its

associated event handler (function), it also passes a single

argument to the function – a reference to the event object.

• The event object contains a number of properties that describe

the event that occurred.

• The table on the next page lists the names of the most

commonly used properties of the event object, which of course

usually differ between the W3C and Microsoft models.

JavaScript – Part 5 – The Event Object

CIS 4004: JavaScript – Part 5 Page 3 © Dr. Mark Llewellyn

JavaScript – Part 5 – The Event Object

W3C Name Microsoft Name Description

e window.event The object containing the event properties

type type The event that occurred (click, focus, blur, etc.)

target srcElement The element to which the event occurred

keyCode keyCode The numerical ASCII value of the pressed key

shiftKey

altKey

cntlKey

Returns 1 if pressed, 0 if not

currentTarget fromElement The element the mouse came from on mouseover

relatedTarget toElement The element the mouse went to on mouseout

Table of the most commonly used event object properties

CIS 4004: JavaScript – Part 5 Page 4 © Dr. Mark Llewellyn

 • By convention, the parameter name e is used in event-triggered

functions to receive the event object argument.

• If you wanted to determine the type of event that occurred,

you’d write the following function:

function myEvent(e) {

 var eventType = e.type

 alert(“The following event has occurred: “, eventType);

 //the alert will display click, or whatever the event

 //type was

}

JavaScript – Part 5 – The Event Object

CIS 4004: JavaScript – Part 5 Page 5 © Dr. Mark Llewellyn

 • Note that this code would not work on Microsoft browsers,

because the Microsoft model does not pass an event object

reference like the W3C model; instead, it uses a central global

object that contains the properties of the most recent event.

• We’ll start by looking at the W3C model before we look at the

Microsoft model.

• To demonstrate how the W3C event model works, we’ll go

back and modify the highlighting example from the previous

set of notes.

• We’ll modify the JavaScript functions addHighlight()

and removeHighlight() so that they no longer have to

get the target element before modifying it.

JavaScript – Part 5 – The Event Object

CIS 4004: JavaScript – Part 5 Page 6 © Dr. Mark Llewellyn

Previous Version

CIS 4004: JavaScript – Part 5 Page 7 © Dr. Mark Llewellyn

Event Object Version

CIS 4004: JavaScript – Part 5 Page 8 © Dr. Mark Llewellyn

Page operates as

before

CIS 4004: JavaScript – Part 5 Page 9 © Dr. Mark Llewellyn

 • As you can see, there is no visual change in how the page

behaves when using the event object when compared to how

the page behaved when accessing the target object directly via

the DOM element.

• However, you could now assign this same event listener to

multiple input fields, and those fields would all display the

same highlight behavior.

• Instead of saying “highlight this field”, the code could state

“highlight the field to which the event occurred.”

• This gives us the ability to streamline the JavaScript to some

extent. The next example will illustrate this.

JavaScript – Part 5 – The Event Object

CIS 4004: JavaScript – Part 5 Page 10 © Dr. Mark Llewellyn

 • With access to the event object, you can also determine the type

of event that occurred, e.g. focus, blur, click, etc., so you

can use a single function to detect both the focus and the blur

events.

• To do this, we’ll again modify the previous example.

• We’ll modify the event listeners to call the same function,
we’ll call this function checkHighlight, which will make

more sense because this function will both add and remove the

highlighting.

The Event Object’s Type Property

CIS 4004: JavaScript – Part 5 Page 11 © Dr. Mark Llewellyn

CIS 4004: JavaScript – Part 5 Page 12 © Dr. Mark Llewellyn

Page operates as before

– no visual change

CIS 4004: JavaScript – Part 5 Page 13 © Dr. Mark Llewellyn

 • When an event triggers a function in W3C-compliant browsers,

a reference to an object containing properties that describe the

triggering event is passed to the function. This event object can

be accessed through the e parameter.

• In Microsoft browsers, the model is slightly different. There is

one global object, window.event, that holds the last event

that occurred.

• Because its global, it doesn’t have to be passed to the function

like the W3C event object; it’s always available to your code.

The Event Object In Microsoft Browsers

CIS 4004: JavaScript – Part 5 Page 14 © Dr. Mark Llewellyn

 • The following two lines are equivalent in their respective

browsers:

 e.type

 window.event.type

• The simplest way to write cross-browser event object code is

like this:

 function eventType(e) {

 if (e) { alert(e.type) }//W3C

 else { alert(window.event.type) } //Microsoft

 //displays the triggering event

 }

The Event Object In Microsoft Browsers

W3C – e must be stated as a function parameter

Microsoft – direct access of global event object

CIS 4004: JavaScript – Part 5 Page 15 © Dr. Mark Llewellyn

 • While the technique on the previous page works fine, branching

your code for every event object property you want to use gets

old fast.

• A better solution is to get the object, whichever kind it is , and

give it a new name and use the OR operator to distinguish:

 var evt = e || window.event;

• If e evaluates to true (a W3C object exists, the evt variable is set

to e – the W3C event object with all its properties. If not, evt is

set to the Microsoft object instead. Now you would have:

 var evt = e || window.event;

 alert(evt.type);

The Event Object In Microsoft Browsers

CIS 4004: JavaScript – Part 5 Page 16 © Dr. Mark Llewellyn

 • The preceding code works because, unlike many event object

properties, the property name for the type of event that occurred

is the same – type – in both W3C and Microsoft browsers.

• If you want to get the event target, which is target for W3C-

compliant browsers and srcElement for Microsoft browsers,

you can expand on the previous example and again use an OR

statement to create a common cross-browser name for the event

target as well:

 var evt = e || window.event;

 var evtTarget = evt.target || evt.srcElement;

 alert(evtTarget);

The Event Object In Microsoft Browsers

CIS 4004: JavaScript – Part 5 Page 17 © Dr. Mark Llewellyn

 • The next example applies this concept to create a cross-browser

compatible version of the highlighted form example that we’ve

been dealing with in the few previous examples.

• Notice again, that there are no visual changes to the way the page

behaves with the exception that it now will also work in a

Microsoft browser.

• The JavaScript is shown on the next page.

The Event Object In Microsoft Browsers

CIS 4004: JavaScript – Part 5 Page 18 © Dr. Mark Llewellyn

Cross-browser compatible

version of the single form field

highlighting example

CIS 4004: JavaScript – Part 5 Page 19 © Dr. Mark Llewellyn

Cross-browser compatible

version – Opera rendering

CIS 4004: JavaScript – Part 5 Page 20 © Dr. Mark Llewellyn

Cross-browser compatible

version – IE rendering

CIS 4004: JavaScript – Part 5 Page 21 © Dr. Mark Llewellyn

• The running example that we’ve been using has included a single

field in the form to which we’ve been attaching event handlers

and responding to events that happened in that particular field.

• The versatility of the event object is in allowing you to attach

event handlers to as many fields as you would like.

• To illustrate, we’ll add a couple more fields to the basic form

we’ve been using. In addition to the email field, I’ve added

fields for the user to enter their first and last names.

• The markup is shown on the next page.

Attaching Event Handlers To Multiple Fields

CIS 4004: JavaScript – Part 5 Page 22 © Dr. Mark Llewellyn

CIS 4004: JavaScript – Part 5 Page 23 © Dr. Mark Llewellyn

• Since there are now several different form elements, the “hook”

into the DOM will need to be higher up at the form element’s id,

which is email_form.

• Once the parent element is established, the you can get at all the

form’s child elements within.

• To do this we’ll need to modify the setUpFieldEvents

function.

• In keeping with our technique of testing that what we’re doing is

correct, we’ll first modify this function to simply tell us how
many input tags (children) are present in the form.

• This part of the modified JavaScript is shown on the next page.

Attaching Event Handlers To Multiple Fields

CIS 4004: JavaScript – Part 5 Page 24 © Dr. Mark Llewellyn

Previous version – hook into

DOM is the email id.

New version – hook into

DOM is higher up the tree at

the form element

CIS 4004: JavaScript – Part 5 Page 25 © Dr. Mark Llewellyn

CIS 4004: JavaScript – Part 5 Page 26 © Dr. Mark Llewellyn

 • Notice that the alert window informs us that there are 4 input

elements in this form. Does this surprise you?

• There are four input elements because the submit button is also an

input element, it simply has a different type (“submit”) than the

other input elements (“text”).

• I don’t want to apply the highlighting styles to the button element.

Without step-by-step testing such as this it would be easy to

overlook this sort of case and this might have induced a weird “bug”

into the code that would have changed the background color of the

button every time it was clicked.

• Now, I’m aware of this and will worry about filtering out the button

a bit later. For now, we’ll loop through all of the input fields and

apply the event listeners to each of them.

Attaching Event Handlers To Multiple Fields

CIS 4004: JavaScript – Part 5 Page 27 © Dr. Mark Llewellyn

CIS 4004: JavaScript – Part 5 Page 28 © Dr. Mark Llewellyn

 • I noticed several of you in your last program did something like the following (a
modified version of the script on the previous page).

• This version is less efficient than the one on the previous page because JavaScript
must recalculate the length of theInputs node list every time the loop executes.
Counting items in arrays and node lists is a relatively slow process in JavaScript. It isn’t
such a big deal with a few items, but if you’re looping over a big data set or hundreds
of table rows, the wasted time can add up.

• Its always good practice to get the number of items once and store it in a variable that
you can use as the loop count.

An Aside – JavaScript Processing

CIS 4004: JavaScript – Part 5 Page 29 © Dr. Mark Llewellyn

CIS 4004: JavaScript – Part 5 Page 30 © Dr. Mark Llewellyn

 • Returning to our original problem. Notice in the screen shot below

that the problem we identified with the submit button is indeed a

problem. We don’t want the submit button to be highlighted when

the cursor moves over the button. We want that behavior to apply

only to the form elements that the user is entering data.

Attaching Event Handlers To Multiple Fields

CIS 4004: JavaScript – Part 5 Page 31 © Dr. Mark Llewellyn

 • What makes the submit button different from the text inputs is that

its type attribute is submit and not text.

• First we’ll create a simple if statement filter based on this difference

to identify and exclude the type submit from our highlighting.

• As before, we’ll add alert pop-up windows to help us test the code.

• The code is shown on the next page and an illustration of it running

on the following page.

Attaching Event Handlers To Multiple Fields

CIS 4004: JavaScript – Part 5 Page 32 © Dr. Mark Llewellyn

CIS 4004: JavaScript – Part 5 Page 33 © Dr. Mark Llewellyn

CIS 4004: JavaScript – Part 5 Page 34 © Dr. Mark Llewellyn

 • Now that we know that we can distinguish between the submit input

type and the text input type, all that is left to do is work this test code

into the JavaScript to be inside the for loop driving through the input

fields.

• This will produce the final version of this markup/JavaScript into a

complete working example that will attach event handlers to

multiple elements. The markup is also cross-browser compatible

due to our technique of being able to distinguish between the W3C

event object model and the Microsoft event object model.

• The complete markup/JavaScript file is available on the course

webpage for you to download and experiment with. The following

page illustrates the final version of the relevant portion of the

JavaScript and the subsequent pages illustrate its rendering.

Attaching Event Handlers To Multiple Fields

CIS 4004: JavaScript – Part 5 Page 35 © Dr. Mark Llewellyn

CIS 4004: JavaScript – Part 5 Page 36 © Dr. Mark Llewellyn

CIS 4004: JavaScript – Part 5 Page 37 © Dr. Mark Llewellyn

CIS 4004: JavaScript – Part 5 Page 38 © Dr. Mark Llewellyn

Notice that the submit

button does not have the

highlighting applied to it. It

now renders properly by the

JavaScript ignoring it.

CIS 4004: JavaScript – Part 5 Page 39 © Dr. Mark Llewellyn

CIS 4004: JavaScript – Part 5 Page 40 © Dr. Mark Llewellyn

